Optimal Rectangle Packing: A Meta-CSP Approach

نویسندگان

  • Michael D. Moffitt
  • Martha E. Pollack
چکیده

We present a new approach to optimal rectangle packing, an NP-complete problem that can be used to model many simple scheduling tasks. Recent attempts at incorporating artificial intelligence search techniques to the problem of rectangle packing have focused on a CSP formulation, in which partial assignments are defined to be the fixed placement of a subset of rectangles. Our technique takes a significant departure from this search space, as we instead view partial assignments as subsets of relative pairwise relationships between rectangles. This approach recalls the meta-CSP commonly constructed in constraint-based temporal reasoning, and is thus a candidate for several pruning techniques that have been developed in that field. We apply these to the domain of rectangle packing, and develop a suite of new techniques that exploit both the symmetry and geometry present in this particular domain. We then provide experimental results demonstrating that our approach performs competitively compared to the previous state-of-the-art on a series of benchmarks, matching or surpassing it in speed on nearly all instances. Finally, we conjecture that our technique is particularly appropriate for problems containing large rectangles, which are difficult for the fixed-placement formulation to handle effi-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimenting Genetic Approach to Extend Rectangular Packing Heuristic Solution

Nesting (Cutting and Packing) problems are optimization problem encountered in many areas of business that look for good arrangement of multiple items in larger containing regions. The objective of this problem is to maximize the utilization of resource material. There is a large range of the applicability of these problems as there are many diverse instances of it that are encountered in the i...

متن کامل

A Novel Greedy Computing Algorithm for Rectangle Packing Problems

Rectangle packing problem often appears in encasement and cutting as well as layout of homepage or newspaper, etc. This problem has been shown to be NP hard. For solving this problem, many compute algorithms based on different strategies are presented in the literatures. A novel-computing algorithm is proposed in this paper. The novel match algorithm tested the instances that taken from the lit...

متن کامل

Optimal Rectangle Packing: Initial Results

Given a set of rectangles with fixed orientations, we want to find an enclosing rectangle of minimum area that contains them all with no overlap. Many simple scheduling tasks can be modelled by this NP-complete problem. We use an anytime branch-and-bound algorithm to solve the problem optimally. Our main contributions are a lower-bound on the amount of wasted space in a partial solution, based ...

متن کامل

Optimal rectangle packing

We consider the NP-complete problem of finding an enclosing rectangle of minimum area that will contain a given a set of rectangles. We present two different constraintsatisfaction formulations of this problem. The first searches a space of absolute placements of rectangles in the enclosing rectangle, while the other searches a space of relative placements between pairs of rectangles. Both appr...

متن کامل

Search Strategies for Rectangle Packing

Rectangle (square) packing problems involve packing all squares with sizes 1 × 1 to n × n into the minimum area enclosing rectangle (respectively, square). Rectangle packing is a variant of an important problem in a variety of real-world settings. For example, in electronic design automation, the packing of blocks into a circuit layout is essentially a rectangle packing problem. Rectangle packi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006